Welcome !


Varun's Blog - At the Speed of Light !

A fact is a simple statement that everyone believes. It is innocent, unless found guilty. A hypothesis is a novel suggestion that no one wants to believe. It is guilty, until found effective. ~Edward Teller

A very warm welcome to my th reader.Why speed of light ? Well, the aim of this blog is to reach the impossible by exploration and scientific fervor. Exploration never ends, knowledge never dies but Speed of Light can be achieved ....

Subscribe now
Showing posts with label solar system. Show all posts
Showing posts with label solar system. Show all posts

Monday, November 06, 2006

Transit of Mercury


On Wednesday, Nov. 8th, Mercury will pass directly in front of the sun. The rare transit will be visible from the Americas, Hawaii and all around the Pacific Rim. It begins at 2:12 p.m. EST (11:12 a.m. PST) and lasts for nearly five hours.

Because Mercury is so small, only a tiny fraction of the sun will be covered. So don't stare at the sun on Wednesday; it will be as blinding as ever. Instead, try to view the event through a properly-filtered solar telescope. Mercury's tiny, jet-black silhouette passing in front of solar prominences, filaments and sunspots should be a marvelous sight.

Informative Links
Live Webcast NASA
Optical Projection & Filter

Read More...

Thursday, April 06, 2006

Planets around Dead Stars


NASA's Spitzer Space Telescope has uncovered new evidence that planets might rise up out of a dead star's ashes.

The infrared telescope surveyed the scene around a pulsar, the remnant of an exploded star, and found a surrounding disk made up of debris shot out during the star's death throes. The dusty rubble in this disk might ultimately stick together to form planets.

This is the first time scientists have detected planet-building materials around a star that died in a fiery blast.



Pic : An artist's concept of a planet-forming disk around pulsar 4U 0142+61. [Movie]

The paper on the Spitzer finding appears in the April 6 issue of Nature. Other authors of the paper are lead author Zhongxiang Wang and co-author David Kaplan, both of the Massachusetts Institute of Technology.

"We're amazed that the planet-formation process seems to be so universal," says Deepto Chakrabarty of the Massachusetts Institute of Technology, principal investigator of the new research. "Pulsars emit a tremendous amount of high energy radiation, yet within this harsh environment we have a disk that looks a lot like those around young stars where planets are being born."


The finding represents the missing piece in a puzzle that arose in 1992, when Aleksander Wolszczan of Pennsylvania State University found three planets circling a pulsar called PSR B1257+12. Those pulsar planets, two the size of Earth, were the first planets of any type ever discovered outside our solar system. Astronomers have since found indirect evidence the pulsar planets were born out of a dusty debris disk, but nobody had directly detected this kind of disk until now.

The pulsar observed by Spitzer, named 4U 0142+61, is 13,000 light-years away in the constellation Cassiopeia. It was once a large, bright star with a mass between 10 and 20 times that of our sun. The star probably survived for about 10 million years, until it collapsed under its own weight about 100,000 years ago and blasted apart in a supernova explosion.

Some of the debris, or "fallback," from that explosion eventually settled into a disk orbiting the shrunken remains of the star, or pulsar. Spitzer was able to spot the warm glow of the dusty disk with its heat-seeking infrared "eyes." The disk orbits at a distance of about 1 million miles and probably contains about 10 Earth-masses of material.

see captionPulsars are a class of supernova remnants, called neutron stars, which are incredibly dense. They have masses about 1.4 times that of the sun squeezed into bodies only 10 miles wide. One teaspoon of a neutron star would weigh about 2 billion tons. Pulsar 4U 0142+61 is an X-ray pulsar, meaning that it spins and pulses with X-ray radiation.

Any planets around the stars that gave rise to pulsars would have been incinerated when the stars blew up. The pulsar disk discovered by Spitzer might represent the first step in the formation of a new, more exotic type of planetary system, similar to the one found by Wolszczan in 1992.

"I find it very exciting to see direct evidence that the debris around a pulsar is capable of forming itself into a disk. This might be the beginning of a second generation of planets," Wolszczan says.

Read More...

Saturday, March 11, 2006

Solar Storm is coming.


Solar minimum has arrived,Sunspots have vanished & Solar flares are nonexistent. The sun is utterly quiet.

This week a storm is coming--the most intense solar maximum in fifty years.The next sunspot cycle will be 30% to 50% stronger than the previous one.
Solar maxima can be intense, as in 1958, or barely detectable, as in 1805, obeying no obvious pattern.

The key to the mystery is a conveyor belt on the sun.
We have something similar here on Earth—the Great Ocean Conveyor Belt, popularized in the sci-fi movie The Day After Tomorrow. It is a network of currents that carry water and heat from ocean to ocean—refer to the diagram below. In the movie, the Conveyor Belt stopped and threw the world's weather into chaos.
Above: Earth's "Great Ocean Conveyor Belt."


The sun's conveyor belt is a current, not of water, but of electrically-conducting gas. It flows in a loop from the sun's equator to the poles and back again. Just as the Great Ocean Conveyor Belt controls weather on Earth, this solar conveyor belt controls weather on the sun. Specifically, it controls the sunspot cycle.
What sunspots are--tangled knots of magnetism generated by the sun's inner dynamo. A typical sunspot exists for just a few weeks. Then it decays, leaving behind a 'corpse' of weak magnetic fields."

Enter the conveyor belt.
"The top of the conveyor belt skims the surface of the sun, sweeping up the magnetic fields of old, dead sunspots. The 'corpses' are dragged down at the poles to a depth of 200,000 km where the sun's magnetic dynamo can amplify them. Once the corpses (magnetic knots) are reincarnated (amplified), they become buoyant and float back to the surface." Presto—new sunspots!



All this happens with massive slowness. It takes about 40 years for the belt to complete one loop. The speed varies "anywhere from a 50-year pace (slow) to a 30-year pace (fast)."

When the belt is turning "fast," it means that lots of magnetic fields are being swept up, and that a future sunspot cycle is going to be intense.
Who's right? Time will tell. Either way, a storm is coming.

Read More...

This is science !

When you are speaking to technically illiterate people you must resort to the plausible falsehood instead of the difficult truth.

Photos of Comet Mcnaught !
Astro-photographer? Send your photos to pics@exploreuniverse.com and have them featured on this blog with your name. Comet Mcnaught : Pictures taken with Nikon D100 on 19/1/07 from Manning Point, northern NSW, Australia by Mr. Peter Enright.
Picture 1
Picture 2
Picture 3
Picture 4

Space News

Astronomy Picture of the Day